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1. INTRODUCTION

It is known that vibrations of a discrete linear mechanical system with n degrees
of freedom are governed in the physical space by a matrix differential equation
of order two. Assumed solutions of exponential form lead to an eigenvalue
problem, the solution of which yields the eigencharacteristics of the mechanical
system: i.e., eigenvalues and eigenvectors. Theoretically, the eigenvalues are
obtained from the solvability condition of a set of n homogeneous linear
equations, which in turn means that the corresponding determinant of
coef®cients has to vanish. This determinantal equation (characteristic equation)
can for large n be solved numerically using a computer. In special cases, the
characteristic equation can be manipulated further to be presented in the form of
a simple analytical expression. One such special case is that of a linear system
damped by means of a single viscous damper [1]. A previous study [2] was
concerned with the above system in which a linear constraint relation between
the system co-ordinates was also allowed. It was shown that the characteristic
equation of this constrained system can also be reduced to a simple analytical
expression. The present note is in some sense a generalization of the results in
reference [2] because not only one but several constraint equations are allowed
here.

2. THEORY

As is known, the motion of a linear discrete mechanical system with n degrees
of freedom is governed in the physical space by the matrix differential equation
of order two

M�q�t� �D _q�t� � Kq�t� � 0, �1�
where M, D and K are the n6n mass, damping and stiffness matrices,
respectively. q is the n61 vector of the generalized co-ordinates. It will be
assumed that the damping action on the system is due to only one viscous
damper of damping constant c. The mathematical expression of this statement is
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rank D � 1: �2�
It is assumed further that the co-ordinates qi of the system are subject to linear
constraint equations of the form

�aTp q � 0, p � 1, . . . , l, �3�
where �aTp � ��a1p, . . . , �anp� and qT � �q1, . . . , qn�.
The main concern of the present note is to give the characteristic equation of

the constrained system described above in the form of an analytical expression
insofar as possible.
The transformation,

q � FFFZZZ, �4�
where FFF � �FFF1, . . . , FFFn� is the modal matrix of the undamped system, results in
the following matrix differential equation in the modal space:

�ZZZ� dddT _ZZZ� OOO2ZZZ � 0, �5�
where ZZZT � �Z1, . . . , Zn�. The relations

FFFTMFFF � I, and FFFTKFFF � OOO2 � diag�o2
i �, i � 1, . . . , n, �6�

are used, which are due to the mass orthonormalization of the mode vectors FFFi.
I denotes the n6n unit matrix.
It is worth noting that the transformed damping matrix FFFTDFFF can be written

in a dyadic form as dddT. The coupling of the eigenmodes is affected by one
viscous damper which acts on the vibrating system via the normalized
orientation vector d with dTd � 1. The magnitude of the damping is represented
by the damping constant d [2, 3]. The matrix OOO2 in equations (6) is de®ned as the
diagonal matrix of the squares of the eigenfrequencies of the undamped
mechanical system.
The transformed constraint equations take the form

aTpZZZ � 0, p � 1, . . . , l, �7�
with aTp � �a1p, . . . , anp�, where aip � �aTpFFFi.
By means of the Lagrange's equations formalism in connection with Lagrange

multipliers, equations (5) and (7) can be combined as

�ZZZ� dddT _ZZZ� OOO2Z �
Xl
p�1

mpap, �8�

where mp denotes the corresponding Lagrange multiplier.
If exponential solutions of the form

ZZZ � aaa elt, mp � bp e
lt, p � 1, . . . , l, �9�

are assumed and these are substituted into equation (8), where l represents the



LETTERS TO THE EDITOR 319

unknown eigenvalue of the constrained system and aaa and bp are unknown
amplitudes,

aaa �
Xl
p�1

bp�l2I� ldddT � OOO2�ÿ1ap �10�

is obtained. Then, after substitution into the constraint equation (7), the
following equations are obtained:

�aTp �l2I� OOO2 � ldddT�ÿ1a1�b1 � � � � � �aTp �l2I� OOO2 � ldddT�ÿ1al�bl � 0,

p � 1, . . . , l: �11�
Equating to zero the determinant D of the coef®cient matrix of this set of
homogeneous equations for bp results in the characteristic equation of the system

D�l� � 0, �12�
where the p, qth element of the l6l determinant D is de®ned as

Dpq � aTp �l2I� OOO2 � ldddT�ÿ1aq: �13�

In order to evaluate Dpq analytically, ®rst one has to evaluate the matrix
�l2I� OOO2 � ldddT�ÿ1. To this end, a matrix inversion formula can be used from
matrix theory which gives the inverse of the sum of a nonsingular square matrix
and a dyadic [4]:

�A� unnnT�ÿ1 � Aÿ1 ÿ Aÿ1unnnTAÿ1=�1� nnnTAÿ1u�: �14�
The speciality of this formula is that if Aÿ1 is known, the inverse of A
augmented by a rank-one matrix can be obtained by a simple modi®cation of the
known Aÿ1.

By identifying l2I� OOO2 � A, dld= u, d= nnn the following equation can be
written:

�l2I� OOO2 � ldddT�ÿ1 � �l2I� OOO2�ÿ1 ÿ �l
2I� OOO2�ÿ1dlddT�l2I� OOO2�ÿ1
1� dldT�l2I� OOO2�ÿ1d : �15�

When the denominator on the right side is equated to zero, nothing else but the
characteristic equation of the damped system without any constraint will be
obtained [1]. This will be denoted by P(l), where,

P�l� � 1� ld
Xn
k�1

d2k
l2 � o2

k

: �16�

P(l)=0 results in a polynomial equation of order 2n in l for the eigenvalues of
the unconstrained system. Hence, the expression (13) takes the form
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Dpq � 1

P�l� �P�l�a
T
p �l2I� OOO2�ÿ1aq ÿ dlaTp ��l2I� OOO2�ÿ1d���l2I� OOO2�ÿ1d�Taq�:

�17�

After some manipulations, it can be shown that

aTp �l2I� OOO2�ÿ1aq �
Xn
i�1

aipaiq

l2 � o2
i

,

aTp �l2I� OOO2�ÿ1d���l2I� OOO2�ÿ1d�Taq �
Xn
i�1

Xn
j�1

aiqajpdidj

�l2 � o2
i ��l2 � o2

j �
: �18�

If expressions (16) and (18) are substituted into equation (17)

Dpq � 1

P�l�
Xn
i�1

aipaiq

l2 � o2
i

� ld
Xn
i�1

Xn
j�1

diajp�diajq ÿ djaiq�
�l2 � o2

i ��l2 � o2
j �

" #
, i 6� j, �19�

is obtained. After arranging the terms in the double sum, expression (19) can
also be expressed in a more symmetrical form as

Dpq � 1

P�l�
Xn
i�1

aipaiq

l2 � o2
i

� ld
Xnÿ1
i�1

Xn
j�i�1

�diajp ÿ djaip��diajq ÿ djaiq�
�l2 � o2

i ��l2 � o2
j �

" #
: �20�

The special case d=0 corresponds to the undamped system in which case
equation (20) reduces to the simple form

Dpq � 1

P�l�
Xn
i�1

aipaiq

l2 � o2
i

: �21�

Upon recognizing that the factor 1/P(l) appears in all elements Dpq of the
determinant D, it can be stated that the characteristic equation of the
constrained system under investigation can be obtained simply by setting the
determinant of the l6l matrix R equal to zero,

det R � 0, �22�

the p, qth element of which is de®ned as

rpq �
Xn
i�1

aipaiq

l2 � o2
i

� ld
Xnÿ1
i�1

Xn
j�i�1

�diajp ÿ djaip��diajq ÿ djaiq�
�l2 � o2

i ��l2 � o2
j �

: �23�

On the other hand, the eigenvectors of the constrained system are given by
equation (10) where the coef®cients bp are obtained from the solution of the set
of homogeneous equations given in equation (11).
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3. NUMERICAL APPLICATIONS

3.1. Example 1

Although the theoretical results of the preceding section are quite general, the
simple system shown in Figure 1 is taken as a ®rst illustrative example. This
example will aid in obtaining a better physical insight into the results that are
obtained.
It is a simple matter to show that the eigenfrequencies of the undamped

oscillator in Figure 1 are o1=0�347296355o0, o2=o0, o3=1�532088886o0,
o4=1�879385242o0, where o2

0 � k=m.
The corresponding modal matrix is as follows

FFF � �FFF1FFF2FFF3FFF4�

� 2

3
����
m
p

0�342020143 0�866025404 0�984807753 0�642787610
0�642787610 0�866025404 ÿ0�342020143 ÿ0�984807753
0�866025404 0 ÿ0�866025404 0�866025404
0�984807753 ÿ0�866025404 0�642787610 ÿ0�342020143

26664
37775:

d and d in equation (5) are obtained as d= c/m and d=[d1, . . . , d4]
T=

[0�228013429 0�577350269 0�656538502 0�428525073]T.
Now, let it be assumed that two constraints of the form q2= aq1, q4=bq3 are

imposed on the system such that according to equation (3)

�a1 � �ÿa 1 0 0�T, �a2 � �0 0 ÿ b 1�T

are obtained. These determine a1 and a2 in equation (7) as

a1 �
ÿ0�228013429a� 0�428525073

0�577350269�1ÿ a�
ÿ0�656538502aÿ 0�228013429
ÿ0�428525073aÿ 0�656538502

2664
3775, a2 �

ÿ0�577350269b� 0�656538502
ÿ0�577350269

0�577350269b� 0�428525073
ÿ0�577350269bÿ 0�228013429

2664
3775:

The constrained system is shown in Figure 2, for a=b=1. After choosing
further k=100, m=5, c=20, the eigenvalues of this special system are given in
Table 1. The complex numbers in the ®rst column are the eigenvalues obtained
by solving the eigenvalue problem of the system in Figure 2. The numbers in the

q4q3q2q1

c

k k k k
mmmm

Figure 1. Unconstrained sample system with four degrees of freedom.
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second column are obtained by solving equation (22) numerically with
MATLAB. The agreement of the complex numbers in both columns is excellent.
In order to gain insight on how accurately the eigenvectors can be obtained,

the eigenvectors of the system in Figure 2 are given in Table 2 according to the
representation ~xTj � �~yTj lj~y

T
j �. The eigenvectors in the ®rst column are obtained

directly by solving the eigenvalue problem of the mechanical system shown in
Figure 2. The eigenvectors in the second column are determined using (10), (4)
and (9). The agreement is again very good.

3.2. Example 2

As a second example the continuous system shown in Figure 3 is considered.
Here, the unconstrained system consists of a clamped±free Bernoulli±Euler beam
which is damped at x= l by a viscous damper of constant c. Bending rigidity,
length and mass per unit length of the beam are EI, L and m respectively. The
equation of motion of small vibrations of the beam is

EIwIV�x, t� �m�w�x, t� � c _w�x, t�d�xÿ l� � 0, �24�
where w(x, t) denotes the bending displacement at point x and time t and d�x� is
the Dirac function. The primes and overdots denote partial derivatives with
respect to x and t, respectively.
The corresponding boundary conditions are

w�0, t� � w 0�0, t� � w00�L, t� � w000�L, t� � 0: �25�
Substitution of a solution of the form

w�x, t� �
Xn
k�1

wk�x�Zk�t�, �26�

where wk(x) are mass-orthonormalized eigenfunctions of a clamped±free beam
and Zk(t) are generalized coordinates into equation (24) and application of
Galerkin's procedure yields, after some arrangement, the equations of motion in

c

kk
2m2m

Figure 2. Constrained system, obtained from the system in Figure 1 by taking q1= q2,
q3= q4.

TABLE 1

Eigenvalues of the system in Figure 2 with k=100, m=5 and c=20

l1,2 ÿ0�28391421�970835i ÿ0�28391421�970835i
l3,4 ÿ0�71608624�970835i ÿ0�71612824�970853i
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the modal space just as in the form of equation (5), with

o2
0 � EI=mL4, o2

i � �b4io
2
0,

�b1 � 1�875104, �b2 � 4�694091, . . . ,

�l � l=L, d � c
Xn
k�1

w2
k��l�, d � �d1, . . . , dn�T, dk � wk��l�

� ������������������Xn
i�1

w2
i ��l�

s
,

wk��l� � 1�������
mL
p �ch �bk�lÿ cos �bk�lÿ �Zk�sh �bk�lÿ sin �bk�l��,

�Zk � �ch �bk � cos �bk�=�sh �bk � sin �bk�: �27�

It is now assumed that the vibrating beam in Figure 3 has to carry at the tip a
heavy mass M with rotational inertia J, as depicted by the dashed lines. The
characteristic equation of the so-constrained system can be obtained now from
equation (22) directly.
The fourth boundary condition has to be modi®ed as

EIw000�L, t� ÿM�w�L, t� � 0, �28�

which represents the force balance at the free end leading to a relation of the
type (7) between the modal co-ordinates Zi(t), where

TABLE 2

Eigenvectors of the system in Figure 2

~y1,2
0�61964220�111909i

1

� �
0�61964220�111909i

1

� �

~y3,4
ÿ1�41964220�711909i

1

� � ÿ1�41969320�711806i
1

� �

c

L

l

x
M,J

EI,m

Figure 3. Viscously damped cantilever beam (unconstrained system) which is carrying a heavy
tip mass M with rotary inertia J.
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ai1 � �b3i �sh �bi ÿ sin �bi ÿ �Zi�ch �bi � cos �bi��

ÿ aMl2

o2
0

�ch �bi ÿ cos �bi ÿ �Zi�sh �bi ÿ sin �bi��, i � 1, . . . , n, �29�

with aM=M/mL.
The third boundary condition is now [5]

EIw00�L, t� ÿ J�w0�L, t� � 0, �30�
which represents the moment balance at the free end. This leads to a relation of
the type (7) between the modal co-ordinates Zi(t), where

ai2 � �b2i �ch �bi � cos �bi ÿ �Zi�sh �bi � sin �bi��

�
�Jl2�bi
o2

0

�sh �bi � sin �bi ÿ �Zi�ch �bi ÿ cos �bi��, �31�

with �J � J=mL3, J being the rotational inertia of the tip mass.
In order to validate equation (22) numerically, one must be able to obtain the

eigenvalues of the system in Figure 3 in another way as well. By using the results
of reference [6], it is easy to show that the dimensionless eigenvalues l� � l=o0

can be obtained as the eigenvalues of the 2n62n matrix

�A � 0 I
ÿM�ÿ1K� ÿM�ÿ1D�
� �

, �32�

with

M� � I� aMa��1�a�T�1� � �Ja� 0�1�a� 0T�1�, D� � �ca���l�a�T��l�, �K � B, �33�
where

B � diag��b4i �, �c � c=mLo0, �x � x=L, a���x� � �a�1��x�, . . . , a�n��x��T,
a�k��x� � ch �bk�xÿ cos �bk�xÿ �Zk�sh �bk�xÿ sin �bk�x�, a� 0��x� � da���x�=d�x, �34�

I, 0 are n6n unit and zero matrix respectively. �Zk is given in equations (27) and
aM in connection with equation (29).

TABLE 3

Eigenvalues of the system in Figure 3

From �A in equation (32) From equation (22)

ÿ0�00149325�311867i ÿ0�00149025�299738i
ÿ0�017708220�651277i ÿ0�017700220�650928i
ÿ1�7522932184�673144i ÿ1�7500582184�667724i
ÿ6�1709352500�877648i ÿ6�1678982495�727023i
ÿ9�0164242979�854106i ÿ9�0442942974�939716i
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The following numerical values are chosen for the physical data of the
vibration system in Figure 3: E=761010 N/m2, I=(0�0560�0053)/12 m4,
L=1 m, mL=0�675 kg, �l � l=L � 0�2, c=5 N/m/s, J=0�675 kgm2.
The ®rst ®ve pairs of eigenvalues l of this system are recorded in Table 3. The

complex numbers in the ®rst column are results of matrix �A in equation (32)
which were obtained by MATLAB. The complex numbers in the second column
are values, obtained as the roots of equation (22) by MATLAB. In both cases
n=10 is assumed. Inspection of the complex numbers in both columns indicates
clearly that their agreement is very good.

4. CONCLUSIONS

This study has dealt with a linear discrete mechanical system which is damped
by a single viscous damper. The co-ordinates of the system are assumed to be
subject to several linear constraint relations. By using a matrix inversion formula
from matrix theory, analytical expressions for the elements of the characteristic
determinant of the constrained system are obtained.
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